

FRESH THINKING supports healing.

www.organogenesis.com

Organogenesis Affinity Fresh Amniotic Membrane

Go from *What If* to *What's Next* with Affinity[®]

Support more natural wound healing with Affinity, the first fresh, living cellular amnion product in the market brought to you by Organogenesis.

The Closest Choice to Native Amniotic Membrane

Like native amniotic membrane, Affinity contains:

- Viable cells, including epithelial cells, fibroblasts, and mesenchymal stems cells (MSCs)¹⁻³
- Growth factors/cytokines² In vitro studies have shown these factors are released and are bioactive
- Native extracellular matrix (ECM) structure with multiple ECM proteins important for scaffolding, including collagen types I, III, V, VI, and hyaluronic acid^{1,3,4}
- The spongy/intermediate layer, an abundant source of proteoglycans, glycoproteins, and hyaluronic acid, which provide structural support as well as modulate cell-to-cell and cell-to-matrix interactions^{1,2,5}

Preserve Important Mesenchymal Stem Cells (MSCs)

Affinity undergoes a proprietary process called AlloFresh.[™] This process preserves MSCs in Affinity, as shown in an *in vitro* study.¹

Research has suggested MSCs play an important role in the wound healing process by: $^{\rm 6\cdot 10}$

In Vitro Studies Have Shown That Affinity Growth Factors/Cytokines Release Similarly to Unprocessed Amniotic Membrane

The Cell Viability You Want and The Flexibility You Need

- Fresh amniotic product with viable cells, including MSCs, growth factors/cytokines, and the native ECM structure
- Multiple applications from head to toe, including those with exposed bone and tendon
- Reimbursed by CMS as a skin substitute in the high bundle

Affinity: Unprecedented Natural Wound Healing

The first and only fresh amniotic membrane

The closest choice to Native Amniotic membrane²

The fresh thinking you and your patients need

- Supported by a wide range of Organogenesis customer programs and services
- Backed by a legacy of quality, integrity, and commitment to empowering wound care and cell tissue replacement with the most effective solutions

AFFINITY PRODUCT INFORMATION			
Code	Sizes	Total cm ²	UPC #
AF-1150	1.5 x 1.5 cm	2.25 cm	857877005139
AF-1250	2.5 x 2.5 cm	6.25 cm	857877005115

*HCPCS for all sizes Q4159

REFERENCES

1. Data on file. Organogenesis Inc.

- McQuilling JP et al. Proteomic Comparison of Amnion and Chorion and Evaluation of the Effects of Processing on Placental Membranes. Wounds. 2017;29(5):E36-E40
- 3. Niknejad H et al. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cells Mater. 2008;15:88-99.
- 4. Mamede AC, et al. Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res. 2012;349:447-458.
- 5. Ghatak S et al. (2015). Roles of Proteoglycans and Glycosaminoglycans in Wound Healing and Fibrosis. Int J Cell Biol, 2015, [834893].
- Maxson S et al. (2012). Concise review: role of mesenchymal stem cells in wound repair. Stem cells translational medicine, 1(2), 142-149.
- Otero-Viñas, M., & Falanga, V. (2016). Mesenchymal stem cells in chronic wounds: the spectrum from basic to advanced therapy. Advances in wound care, 5(4), 149-163.
- 8. Nuschke, A. (2014). Activity of mesenchymal stem cells in therapies for chronic skin wound healing. Organogenesis, 10(1), 29-37.
- Chen L et al. (2008). Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PloS one, 3(4), e1886.
- Hocking, A. M., & Gibran, N. S. (2010). Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Experimental cell research, 316(14), 2213-2219.

From Organogenesis, which has a legacy of quality, integrity, and commitment to empowering wound care and cell tissue replacement with the most effective solutions. For product information, technical questions or reimbursement, please call 1-888-432-5232.

©2018 Organogenesis Inc. OI-AFF1022 All rights reserved. Printed in USA. 7/18 Product name(s) are trademarks of Organogenesis Inc.